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- Algorithms predicting:
default / self-harm / re-arrest
...are used in:

loan / medical / criminal justice decisions

- But, humans — not algorithms — usually make final decisions

(loan officers / therapists / judges) Thomas Fuchs

=> understanding how algorithms change these systems requires understanding
how algorithms change human decisions
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Studying the effect of “algorithms” on decisions conflates these two components



This paper:

Conventional wisdom:

algorithms provide decision-makers
with data-driven predictions

“algorithmic predictions”

But:

algorithms often provide more than predictions —
they provide recommendations

“algorithmic recommendations”



This paper: demonstrates independent effects of reccommendations

Conventional wisdom: But:
algorithms provide decision-makers algorithms often provide more than predictions —
with data-driven predictions they provide recommendations

“algorithmic predictions” “algorithmic recommendations”




This paper: demonstrates independent effects of reccommendations

Conventional wisdom: But:

algorithms provide decision-makers algorithms often provide more than predictions —
with data-driven predictions they provide recommendations

“algorithmic predictions” “algorithmic recommendations”

Empirical challenges: opaque institutional details around algorithm construction and
implementation + simultaneous introduction of the predictions and recommendations



This paper: demonstrates independent effects of reccommendations

Conventional wisdom: But:

algorithms provide decision-makers algorithms often provide more than predictions —
with data-driven predictions they provide recommendations

“algorithmic predictions” “algorithmic recommendations”

Empirical challenges: opaque institutional details around algorithm construction and
implementation + simultaneous introduction of the predictions and recommendations

Leverage a natural experiment (judges making bail decisions in CJS) where

1. algorithmic predictions given to decision-makers stayed the same
2. BUT use of algorithmic recommendations changed
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Preview of results

1. Recommendations change decisions

o Recommendations have independent effects from algorithm predictions themselves
o Lenient recommendations increase lenient bail by 50%

2. Why? Recommendations can change private costs of errors
o Making mistakes is less costly when decision consistent with recommendation
(lenient recommendations provide “cover” for judges)
o Algorithms can impact decision-maker incentives, rather than just predictions

3. Heterogeneity: Recommendations may not impact all groups equally
o Judges deviate from lenient recommendation more for Black defendants than for white
defendants with the same algorithmic risk
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— These papers: T

algorithms can outperform human decisions

...but what about when humans are involved?
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Sloan, Naufal, and Caspers
(Forthcoming), Stevenson (2018), Doleac
and Stevenson (Forthcoming), Garrett
and Monahan (2018), DeMichele et al.
(2018), Cowdill and Tucker (2019)

These papers: how does human use of algorithms
change outcomes?
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distinction between these intermediate options




Bail system in the US

- Incarceration before any conviction common in the US
- 65% of people in US jails in pretrial detention (V500,000 people)

Arrest => Bail conditions set => Conviction determination

- Bail's purpose: minimum conditions to ensure court appearance + public safety

- Most salient example of bail: money bail
Requires financial deposit for jail release
Goal: incentivize returning to court/no rearrest (i.e., good conduct)



Bail decisions and algorithms

Judge objective: minimize bail conditions, minimize pretrial misconduct

Lever: setting money bail (requires defendant to post money for release from jail)

PSA / 2 Counties and 5 Pilot

STATE TYPE/SCOPE OF USE
|Alabama IVPRAI / Jefferson County
|Alaska State Created / Statewide

5 PSA / Statewide | VPRAI / 2
(TS County Superior Courts
|Arkansas State Created / Statewide

(California (Sample risk
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from San Francisco,
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Delaware Statewid

District of Columbia

Developed with Urban Institute
and Maxarth

Florida

PSA / Volusia County |
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Mississippi

ICRJ (Crime Justice Institute) /
Statewide
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lowa. ESA /4 Counties via Pilot New York |State Created / State-wide for
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Kansas State created / Johnson County| PSA/ 10 ) oo
[Kentucky PSA / Statewide North Carolina Eeten st:?:vtxdle ::: CRing
lLouisiana [PSA/ New Orleans P TS o R
i ounties -
ODARA (sex offenders) / Ohio A
5 2 Statewide
Maine Statewide | 2019 Task Force
[for expansion G ORAS for Pretrial Services \Washington PSA / 3 Counties

IMaryland zﬁz,:;\?;e:tlt’m-s; counties = I Program + LSI/R / Statewide \West Virginia LS/CMI

atewide regon (sample , .
Massachusetis O atow go0iCan Public Safety Checkiist Wisconsin (See sample ;
IMichi ICOMPAS for Sentencing / PSA / Allegh: County | Stat assessment PSA /4 Counties | COMPAS /

ichigan : . legheny County e i
e [Statewide Pennsylvania bl 1 Sy documents) Statewide
Release Evaluation IMNPAT / Statewide Rhode Island PSA / Statewide W . COMPAS for Prisoners /
EomisndiBenclCand) [South Carolina State Created - Cash Bail Use yoming Statewide
[South Dakota PSA / 2 Counties Federal PTRA

PSA / Harris + Dallas County |

[Lexaslisampie PRAISTX (derivative of ORAS)
/ ide Parole Board
Utah PSA / Statewide
‘ermont ORAS

Source: Epic (2020)
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How algorithms matter depends on the setting

Example 1: allocating housing Example 2: setting bail after arrest
- People are scored (e.g., according to need - People are scored (e.g., according to risk of
or housing readiness) failing to appear in court)
- Generates a ranked list - Scores, recommendations given to judges
- Available housing allocated down the list - Judges decide how to set bail
Supply of housing fixed Supply of bail is not fixed
=> algorithms only change allocation => algorithms can change allocation AND

composition



Empirical setting: Kentucky bail decisions




Pre-Period: judges set bail without recommendations

Judges make bail decisions via brief phone calls with pretrial officers (admin court employees)

Before June 2011:

- Judge receives info about defendant, incident, risk level and makes a bail decision in a few

minutes
Risk level: Kentucky Pretrial Risk Assessment tool
Judge decides whether to set money bail



The Kentucky Algorithm

After person booked, pretrial services
officer calculates a risk score

Not complex black-box ML tool — it is a
“checklist tool” (or “rule-based formula®)

Total points and convert to levels:
- 0-5: low
- 6-13: moderate
- 14-24: high

Scores have relative, not absolute
meaning (e.qg., high is riskier than low)

Only levels shared with judges

Risk Component

No verified address

No verified means of support
ABC Felony charge

Pending case

Prior/active mis/felony FTA
Prior FTA traffic violation
Prior misdemeanors

Prior felonies

Prior violent convictions
History of drug/alcohol abuse
Prior felony escape conviction

On probation/parole

Points

=Bl ) IS — R o B o i N




June 2011: House Bill introduces recommendation for some cases

Judges make bail decisions via brief phone calls with pretrial officers (admin court employees)

Before June 2011:

- Judge receives info about defendant, incident, risk level and makes a bail decision in a few

minutes
- Risk level: Kentucky Pretrial Risk Assessment tool
- Judge decides whether to set money bail

After June 2011:

- House Bill (legislature action) recommends no money bail (“lenient bail”) for low and
moderate risk level cases
- Judges could deviate by saying a few words (no large admin cost)
- No recommendation for high risk cases



Variation in recommendation over time and scores

R .
No recommendation June 2011 ecommendation

(lenient bail for low/moderate cases)
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Variation in recommendation over time and scores

No recommendation June 2011

Recommendation
(lenient bail for low/moderate cases)

"Low Risk"

"Moderate Risk" "High Risk"
20000+

Lenient bail recommended for 90% of cases

150001

100001

Number of cases

50001
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Variation in recommendation over time and scores

No recommendation June 2011

Recommendation
(lenient bail for low/moderate cases)

"Low Risk"

"Moderate Risk" "High Risk"
20000+

Lenient bail recommended for 90% of cases

Before June 2011, only 32% got lenient bail
(would align with a threshold of score<4)

150001

100001

Number of cases

50001

III|IIII|I|IIIh-.-_

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
KPRA Risk Score
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Status quo bail decisions

Legal bail objective: set lowest possible bail to ensure court appearance, public safety
=> want to set bail low but also want low misconduct

Judge has choice between lenient (ho money bail; b=I) and harsh bail (money bail; b=h)

Judge costs:

P(mib=l) x c(mib=l)  @-PieHb=h}}Pirib=h}—etmib=h} + P(dIb=h) x c(dIb=h)

probability of cost of probability of probability of cost of probability cost of
misconduct misconduct release misconduct misconduct of detention detention

Judges do not face costs when make “correct decision”

=>no misconduct costs when harsh and released (but no way to “verify” detention choice because misconduct unobserved)
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I, otherwise
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Status quo bail decisions

Judge sets bail based on threshold rule:

Pr* Pr.*

Lowest

.¢ c(d|b=h Pr(m|b=I
s h, lfH_%cmb=1 <%_|J_%Prdb=h

I, otherwise

Pr..* Pr*
I N-1 N Highest

Probability
Ratio

lenient

How does the judge predict P(mlb=I)?

- Vector of case information: X

Probability
I Ratio

Cost Ratio harsh

- Risk level from algorithm r®in {low, moderate, high}
Transformation of PA(mlb=l), algorithm’s prediction of misconduct under lenient bail

- P(mib=1)=f(X, r*)
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Introduce algorithm recommendation R, which is based on r*
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-, otherwise



Decisions with algorithm recommendations

Introduce algorithm recommendation R, which is based on r*

. {b =1, ifrd € {low, moderate}

-, otherwise

Theory 1: Recommendation impacts judge predictions only

- R: b=l tells judge that r*in {low, moderate)

Judge already knew this because P(mlb=I)=f(X, rA)
Prediction: no changes to behavior
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Decisions with algorithm recommendations

Theory 2: Recommendation changes judge error costs

Harsh recommendation makes lenience more costly

School therapists re: mental health
algorithmic recommendations

CAN Al TREAT MENTAL

ILLNESS? “I’d feel nervous about the
New computer systems aim to peer inside our heads—and to Iiability." You have this thing
help us fix ey find there. . . .
telling you someone is high

By Dhruv Khullar

risk, and you’re just going to

let them go?”




Decisions with algorithm recommendations

Theory 2: Recommendation changes judge error costs

Harsh recommendation makes lenience more costly

School therapists re: mental health
algorithmic recommendations
CAN All. TREAT MENTAL

ILLNESS? “I'd feel nervous about the
New computer systen R CZN liability... You have this thing

S e telling you someone is high
risk, and you’re just going to
let them go?”

NEWS

Darrell Brooks Should Not Have Been Released on
Low Bail, Milwaukee DA Admits

BY KATHERINE FUNG ON 11/22/21 AT 2:02 PM EST

"[Bail] in this case is not consistent with ... the risk assessment
of the defendant prior to the setting of bail."”




Decisions with algorithm recommendations

Theory 2: Recommendation changes judge error costs

Lenient recommendation makes lenience less costly Harsh recommendation makes lenience more costly

School therapists re: mental health
algorithmic recommendations

WHY NEW YORK JAIL POPULATIONS  [THE APPEAL CANAL TRt PERTAL

ARE RETURNING TO PRE-PANDEMIC ' bty You howe this thi

I-EVEI-S i:y;Oe ch)zzert New computer ,«:\‘,\‘/’n sid 'anrv/.mm—‘nn/ to Iiabill'ty... You have this thing
: p. IS telling you someone is high

risk, and you’re just going to

In New York City court observations,
let them go?”

. . NEWS
“judges routinely stated that they only ordered people
to be released [...] because the law forced them to.” Darrell Brooks Should Not Have Been Released on
(Corvert 2022) Low Bail, Milwaukee DA Admits

BY KATHERINE FUNG ON 11/22/21 AT 2:02 PM EST

"[Bail] in this case is not consistent with ... the risk assessment
of the defendant prior to the setting of bail."”
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Theory 2: Recommendation changes judge error costs
- ¢(mlb=l) becomes c(mlb=l, R); in this case, c(mlb=l, R) = ¢(mlb=I, R*7)
Judges set bail based on two threshold rules (depending on if recommendation applies or not):
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Theory 2: Recommendation changes judge error costs
- ¢(mlb=l) becomes c(mlb=l, R); in this case, c(mlb=l, R) = ¢(mlb=I, R*7)
Judges set bail based on two threshold rules (depending on if recommendation applies or not):
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I, otherwise
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Decisions with algorithm recommendations

Theory 2: Recommendation changes judge error costs
- ¢(mlb=l) becomes c(mlb=l, R); in this case, c(mlb=l, R) = ¢(mlb=I, R*7)

Judges set bail based on two threshold rules (depending on if recommendation applies or not):

f h, c(mlb=l, R°)<c(mlb=l) because there is less liability when a
R=b=l, : mistake is in line with a recommendation
e 4 I, otherwise
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| I, otherwise
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Probability I ProRbatpiIity
Ratio lenient harsh ™

Cost Ratio



Decisions with algorithm recommendations

Theory 2: Recommendation changes judge error costs
- ¢(mlb=l) becomes c(mlb=l, R); in this case, c(mlb=l, R) = ¢(mlb=I, R*7)

Judges set bail based on two threshold rules (depending on if recommendation applies or not):

f h, c(mlb=l, R°)<c(mlb=l) because there is less liability when a
R=b=l, : mistake is in line with a recommendation
e 4 I, otherwise
N h, o if C(d|bb=’;) < ';'(Z"bbﬁf) - Critical threshold shifts right for low/moderate cases
R=-, Gl _.) riglb=i) (increase in lenient bail setting rate)
| I, otherwise
* * * *
Lot Pr.*  Pr, Pro1Pry Highest
Probability I ProRbatpiIity
Ratio lenient harsh ™
Cost Ratio



Causal effects of
algorithmic recommendations
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- High risk level cases do not
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Difference-in-differences approach

- Low/moderate risk level cases get a lenient recommendation
- High risk level cases do not
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Difference-in-differences approach

- Low/moderate risk level cases get a lenient recommendation
- High risk level cases do not
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Difference-in-differences approach

Percent Lenient Bail

Low/moderate risk level cases get a lenient recommendation

High risk level cases do not
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Heterogeneity in effects across the risk score distribution
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Heterogeneity in effects across the risk score distribution
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Heterogeneity in effects across the risk score distribution
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Heterogeneity in effects across the risk score distribution

Differences-in-differences estimates
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Another approach: leverage discontinuities
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Another approach: leverage discontinuities
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Regression discontinuity after recommendations
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Regression discontinuity after recommendations
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Regression discontinuity after recommendations
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Regression discontinuity after recommendations

"Low Risk" | "Moderate Risk" I "High Risk"
80% 1 N I I
| I
A I !
'-TE i Post-period: Recommendation
M 60% 1 A I changes over threshold
= - | |
3 A l I Time Period
& I I
j]’ 40% - A | N Pre-HB463
— Post-HB463
5 1 A A L, A A A , 1
@) 1 A | .
= : : .1 RD:13.7 pp increase
Al 20% | |
i I A
: I A 4L, A
| I
0% 1 |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
KPRA Risk Score



Regression discontinuity after recommendations
=/= recommendation effect of interest

Two other factors change discontinuously over threshold



Regression discontinuity after recommendations
=/= recommendation effect of interest

Two other factors change discontinuously over threshold

1. Risk level label

"Low Risk" "Moderate Risk" "High Risk"

- (o2} foe]
S = S
R R B

Percent Lenient Bail

n
3
=

(=3
=X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
KPRA Risk Score



Regression discontinuity after recommendations
=/= recommendation effect of interest

Two other factors change discontinuously over threshold

1. Risk level label 2. Prior felony conviction rate
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Solution: leverage discontinuities across time periods

PRE-PERIOD

Percent Lenient Bail

80%

60%

40%

20%

0%

"Low Risk"

"Moderate Risk"

I
I
I
I
I
|
|
I
I
I
|
|
I
I
|
|
|
1

"High Risk"

7 8 9 10 11 12 13 14 15 16 17

KPRA Risk Score

POST PERIOD

80% 1

60%

40% 1

Percent Lenient Bail

20%

0% 1

"Low Risk"

"Moderate Risk" "High Risk"

1
I
I
I
I
1
I
I
I
I
1
I
I
I
I
1
1
1

6

7 8 9 10 11 12 13 14 15 16 17
KPRA Risk Score



Solution: leverage discontinuities across time periods

Percent Lenient Bail

PRE-PERIOD POST PERIOD
o "Low Risk" : "Moderate Risk" : "High Risk" "Low Risk" : "Moderate Risk" . "High Risk"
| | B ; ;
I 1 , |
| | —
60% | 1 g 60%‘ : <—I_
1 1 = : recommendation +
: , 2 I risk level/felony probabilities
40% : : E) 40% 1 : change ovelr threshold
1 1 e 1 1
. : y I I
: ; o) I I
20% i i & 20% 1 | i
| 1 I I
1 1 : i
0% I 1 ; ;
¢ I 1 0% . .

012345678'91011121314151617 ()iiéziéé%ééll()l'llél'31;1151'6ll7
KPRA Risk Score KPRA Risk Score



Solution: leverage discontinuities across time periods
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Solution: leverage discontinuities across time periods

PRE-PERIOD POST PERIOD
80%% "Low Risk" : "Moderate Risk" : ”ngh Risk" "Low Risk" | "Moderate Risk" | ”ngh Risk"
? 80% 1 I t
I | : :
— ! ! | |
o 60% ! — B 600 : ==
k= | risk level/felony probabilities = : recommendation +
% : change over threshold 'QE) I risk level/felony probabilities
Q ! I
- 40% i i 2 0% | change ovelr threshold
[ | 1 -~
c I I
& 20% , i & 20% : :
I |
1 I
: : | I
0% 1 1 0% 1 : :

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
KPRA Risk Score

KPRA Risk Score

Difference-in-discontinuity (diff-in-disc)= RD(post)-RD(pre)
=> to isolate recommendation effect



Differences-in-discontinuities
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Differences-in-discontinuities
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Addressing identification concerns
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Changes over time + implications for estimates

same risk levels available

- No recommendation

- Levels optional

June 2011

- Recommendation (lenient bail
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- Levels mandated
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Assuming levels used before:

Post-period RD:
[recommendation eff] + [level eff, ]+ [prior felony eff]

Pre-period RD:
[level eff,, ] + [prior felony eff]

Diff-in-disc:
[recommendation effect]



Changes over time + implications for estimates

same risk levels available
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- Levels optional
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Beforehand, levels consulted in w cases (in [0,1]) :

Post-period RD:
[recommendation eff] + [level eff, ]+ [prior felony eff]

Pre-period RD:
w(level eff, ]+ [prior felony eff]

Diff-in-disc:
[recommendation effect] + (1-w)[level eff ]



Method 1: Estimating w
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Beforehand, levels consulted in w cases (in [0,1]) :

Method 1: Estimating w
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Using the low/moderate discontinuity:

Post-period RD:
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(1-w)[level effect, ]



Method 1: Estimating w
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Method 1: Estimating w

Beforehand, levels consulted in w cases (in [0,1]) :

son Low Risk : Moderate Risk : High Risk Post-period RD:
: : [recommendation eff] + [level eff, ]+ [prior felony eff]
r'y
7@ 1 1
2 6% " A, : | » Pre-period RD:
g = a ! I Time Period wllevel eff, ]+ [prior felony eff]
5 40% . Al | = Pre-HB463
£ - s a4, A A4 £ Post-HBA63 Diff-in-disc:
5 - : [recommendation effect] + (1-w)[level eff ]
R~ 20% 1 LR R R
»
: : Ll | A &
0% : : Low-Moderate
o 1 2 3/4 5 6 7 8 9 10 11 12 13 14 15 16 17
KPRA Risk Score 0.15
s
Using the low/moderate discontinuity: g | seme ———
) \ & o010 e ETTIINANIS
Post-period RD: 8.3pp é -
[level eff , ] 3 +0.067 Fa—
=1 10023 TS
. < 0.05 I
Pre-period RD: 6.7 — e
wllevel eff 1] PP w=0.81 § .
LM 0.016
Diff-in-disc: 1.6 pp Levels consulted in 0.00 ©0o15)
(1-w)[level effect , ] / 81% of cases

RD (Pre) RD (Post) Diff-in-Disc



Method 1: Updating estimates with w = 0.81

Parameter  Original Estimate (w = 1)

[recommendation eff] + [level eff,,,] + [prior felony eff] 137

[level eff,, ] + [prior felony eff] 61
[recommendation eff] 76




Method 1: Updating estimates with w = 0.81

Parameter  Original Estimate (w = 1) Adjusted Estimate (w = 0.81)

[recommendation eff] + [level eff,,,] + [prior felony eff] 137

[level eff,, ] + [prior felony eff] 61
[recommendation eff] 7 6




Method 1: Updating estimates with w = 0.81

Parameter  Original Estimate (w = 1) Adjusted Estimate (w = 0.81)

[recommendation eff] + [level eff,,,] + [prior felony eff] 137 137

[level eff,, ] + [prior felony eff] 61
[recommendation eff] 7 6




Method 1: Updating estimates with w = 0.81

Parameter  Original Estimate (w = 1) Adjusted Estimate (w = 0.81)

[recommendation eff] + [level eff,,,] + [prior felony eff] 137 137

llevel eff,, ]+ [prior felony eff] 6.1 -7.5
[recommendation eff] 76 > 62




Method 2: Intuitive subsetting

DD estimates [recommendation effect] + (1-w)[level effect]
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=> Misdemeanors + no risk factors / scores of 0: no convictions, no prior FTAs
=> 7% of the data
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Heterogeneous effects by defendant race




Racial disparities in risk scores, recommendations, and outcomes

Concern that use of algorithms may widen racial disparities
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Differences primarily due to:
FTA, prior felony conviction, prior violent conviction weights
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If bail automatically set by recommendations
(low/mod => lenient; high => no lenient),

Black people would’ve been 3.3 pp less likely to
get lenient bail (91.5% vs. 94.8%) than white people

After the recommendations implemented,

Black people were 9.3 pp less likely to get lenient
bail (36.7% vs. 46%) than white people



Racial disparities in risk scores, recommendations, and outcomes

Concern that use of algorithms may widen racial disparities

If bail automatically set by recommendations
(low/mod => lenient; high => no lenient),

lenient no lenient

o Black people would’ve been 3.3 pp less likely to
get lenient bail (91.5% vs. 94.8%) than white people
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bail (36.7% vs. 46%) than white people
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suggests: lenient recommendation effects vary by defendant race



Split the original diff-in-diff approach by defendant race
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Effects of algorithmic recommendations differ by defendant race

Dependent variable: 1(lenient bail)
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Effects of algorithmic recommendations differ by defendant race

Dependent variable: I(lenient bail)
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Effects of algorithmic recommendations differ by defendant race

Dependent variable: I(lenient bail)

DD DD DDD
(White) (Black)
1) 2) €)
I(score<14) x Post 0.175***  0.094** 0.174***
(0.021) (0.037) (0.021)
I(score<14) x Black 0.026
(0.031)
Post x Black —0.0004
(0.033)
I(score<14) x Post x Black —0.080**
(0.035)

Mean Dep. Var. (Pre-HB463) 0.312 0.298 0.310
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Evidence across the risk score distribution

Black defendants are less likely
to receive lenient bail than
white defendants with identical risk scores

Post-HB463
80%. ‘ ................................... e e
) A
= [ ]
Cg 60%"" A‘ S RRELLELERRRRRRS
-E e,
.qv;l) [ ‘ -
840%“ | o “
2 . N
8 [ I | [ ] i:
E) 20%. e
0%. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
012345678 91011121314151617
KPRA Risk Score

Defendant Race = Black & White



Evidence across the risk score distribution
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Effects over the distribution, split by defendant race
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Effects over the distribution, split by defendant race
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What explains this heterogeneity?
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What explains this heterogeneity?

Dependent variable: 1(lenient bail)

DDD DDD DDD
1) 2) ©)

I(score<14) x Post 0.174***

(0.021)
I(score<14) x Black 0.026 —0.013 —0.013

(0.031) (0.036) (0.028)
Post x Black —0.0004 —0.003 0.001

(0.033) (0.031) (0.025)
I(score<14) x Post x Black —0.080** -0.017 —0.024

(0.035) 0.035) (0.029)
Mean Dep. Var. (Pre-HB463) 0.310 0.310 0.310
Additional Controls - judge-level-time  county-level-time

varying FE's varying FE's



Judges with more Black defendants respond less to lenient recommendations
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Judges with more Black defendants respond less to lenient recommendations

Subset to cases with score <14,
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Why do they respond less?

Judge x Post Fixed Effect

Could this relationship be explained by...
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Why do they respond less?

Could this relationship be explained by...

0al .
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Data sources:

Judge demographics/experience: hand-collect data from public profiles online, interviews with staff
Election competitiveness: hand-collect data on 2010 local election PDFs

Misconduct rates: calculate FTA/re-arrest rates by judge in pre-period

Population and crime rates: county-level data from 2010 UCR data



Why do they respond less?
Dependent Variable = Judge x Post FE
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Share Black Defendants —0.383***
(0.084)

Judges who see 10 pp more Black defendants
respond to the recommendation 3.8 pp less

(V25% drop from the 15 pp baseline effect)
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Why do they respond less?
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Dependent Variable = Judge x Post FE

(2) €)

(4)
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(6)

Share Black Defendants —0.383***

(0.084)

Judges who see 10 pp more Black defendants
respond to the recommendation 3.8 pp less

(V25% drop from the 15 pp baseline effect)

Suggestive evidence:
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Reputational cover recommendations provide depends on county demographics

similar to Feigenberg + Miller (2021) finding of higher CJS severity in more racially heterogeneous places
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Conclusion




Summary of key results

1. Algorithmic recommendations are common + they have independent effects
on human decisions

- Setting algorithmic recommendations =/= solving a prediction problem
- Lenient recommendations increase lenient bail by 50%

2. Why? Recommendations can change private costs of errors

- Making mistakes is less costly when decision consistent with recommendation
(lenient recommendations provide “cover” for judges)
- Algorithms can impact: - decision-maker incentives (rather than just predictions)
- composition of decisions (rather than just allocation)

3. Heterogeneity: Recommendations can have unintended effects

- Judges deviate from lenient recommendation more for Black defendants than for white
defendants with the same algorithmic risk
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